CS 237: Probability in Computing

Wayne Snyder
Computer Science Department
Boston University

Lecture 11:

- Random Variables (review)
- Probability Distributions of Random Variables
- Bernoulli
- Binomial
- Geometric
- Negative Binomial (Pascal)
- Hypergeometric
- [We will delay the Poisson]

Discrete RandomVariables: Probability Mass Function

The probability function of a discrete random variable X is a function

$$
f_{X}=\text { Probability Mass Function (PMF) }
$$

which assigns a probability to each real number in the range of X and follows the normal rules for a probability space:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{X}}: R_{x} \rightarrow \mathcal{R} \\
\forall a \in R_{x} \quad \mathrm{f}_{\mathrm{X}}(a) \geq 0 \\
\sum_{a \in R_{x}} \mathrm{f}_{\mathrm{X}}(a)=1.0
\end{gathered}
$$

Discrete RandomVariables: Probability Distributions

We will emphasize the distributions of random variables, using graphical representations to help our intuitions.

Example:
$Y=$ "The number of tosses of a fair coin until a head appears"

$$
\begin{aligned}
R_{Y} & =\{1,2,3, \ldots\} \\
f_{Y} & =\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\}
\end{aligned}
$$

Discrete RandomVariables

Notation: $\quad \begin{aligned} & P(X=k)={ }_{\text {def }} \mathrm{f}_{\mathrm{X}}(k) \\ & P(X \neq k)=\text { def } \\ & 1.0-\mathrm{f}_{\mathrm{X}}(k) \\ & P(X \leq k)={ }_{\text {def }} \sum_{a \leq k} \mathrm{f}_{\mathrm{X}}(a) \\ & P(j \leq X \leq k)={ }_{\text {def }} \sum_{j \leq a \leq k} \mathrm{f}_{\mathrm{X}}(a)\end{aligned}$

$$
\begin{array}{rlr}
P(Y=4) & =\frac{1}{16} & R_{Y}=\{1,2,3, \ldots\} \\
P(Y<4) & =\frac{7}{8} & \mathrm{f}_{\mathrm{X}}=\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right\} \\
P(2 \leq Y \leq 4) & =\frac{7}{16} &
\end{array}
$$

Functions of Discrete RandomVariables

Why did I say you have to be careful? Two main reasons...
One, the function of a random variable may combine outcomes...
Example: Let $\mathrm{Y}^{\prime}=\mathrm{X}-3$ and let $\mathrm{Y}=|\mathrm{X}-3|$

$$
\begin{aligned}
& R_{Y^{\prime}}=\{-2,-1,0,1,2,3\} \\
& f_{Y^{\prime}}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& R_{Y}=\{0,1,2,3\} \\
& \mathrm{f}_{\mathrm{Y}}=\left\{\frac{1}{6}, \frac{2}{6}, \frac{2}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Functions of Discrete RandomVariables

$$
R_{X}=\{1,2,3,4,5,6\}
$$

Two, you have to be careful when a random variable is used more than once, since each occurrence refers to a potentially different random outcome!

Let $\mathrm{Y}=2$ * X (twice the dots showing on a thrown die)

$$
\begin{aligned}
& R_{Y}=\{2,4,6,8,10,12\} \\
& f_{Y}=\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \cdot \frac{1}{6}, \frac{1}{6}\right\}
\end{aligned}
$$

Let $Y=X+X \quad$ (sum of the dots showing on two thrown dice)

$$
\begin{gathered}
R_{Y}=\{2,3,4,5,6,7,8,9,10,11,12\} \\
f_{Y}=\left\{\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36}\right\}
\end{gathered}
$$

Standard Distributions

We will look at the following discrete distributions:
Discrete Distributions

- Bernoulli
- Binomial (Iterated version of Bernoulli)
- Geometric
- Negative Binomial (Pascal) (Iterated version of Geometric)
- Hypergeometric (in your textbook, but we won't cover it)
- Poisson (We'll do this one separately in about a week).

These are summarized, with useful code for displaying the PMF and CDF in the notebook Distributions.ipynb on the class web site. Wikipedia has very good pages on all these distributions.

We will study these by considering the canonical problems which they describe....

Special Distributions

Any random variable X has a Probability Distribution which can be characterized by

- $\mathrm{R}_{\mathrm{X}} \quad$-- The range of the random variable
- f_{X}-- The Probability Mass Function (PMF)
- $\mathrm{F}_{\mathrm{X}} \quad--$ The CDF
- $\mathrm{E}(\mathrm{X})$-- Expected value
- $\operatorname{Var}(\mathrm{X}), \sigma_{\mathrm{X}}$-- Variance, Standard Deviation

In addition, we are interested in
Next week...

- The canonical experiment which defines it
- Formulae for calculating f_{X} and F_{X}, if such exist (hopefully efficient!)
- Algorithms for generating random variates from the distribution
- Any special properties of the distribution (e.g., the "memoryless property")
- Applications (random experiments which follow that distribution)

Bernoulli Distribution

Suppose you have a coin where the probability of a heads is p and we define the random variable

$$
\mathrm{X}=\text { "the number of heads showing on one flipped coin" }
$$

Then we say that X is distributed according to the
Bernoulli Distribution with parameter p , and write this as:

$X \sim \operatorname{Bernoulli}(p)$

where

$$
\begin{gathered}
R_{X}=\{0,1\} \\
f_{\mathrm{X}}=\{1-p, p\}
\end{gathered}
$$

Among other accomplishments, Bernoulli discovered the number \boldsymbol{e} (but Euler got the credit for "Euler's Number").
$e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

Bernoulli Distribution

Each "poke" of such a random variable is called a Bernoulli Trial, and the outcomes are often labelled as

$$
1=\text { Success } \quad 0=\text { Failure }
$$

Bernoulli Trials, and Bernoulli random variables, describe

$$
\begin{gathered}
X \sim \operatorname{Bernoulli}(p) \\
R_{X}=\{0,1\} \\
\mathrm{f}_{\mathrm{X}}=\{1-p, p\}
\end{gathered}
$$ desirability of the outcome:

- Will I pass this course or not?
- Am I pregnant or not?
- Do I have cancer or not?

Binomial Distribution

The Binomial Distribution occurs when you count the number of successes in N independent and identically distributed Bernoulli Trials (i.e., p is the same each time).

Formally, if $\mathrm{Y} \sim \operatorname{Bernoulli(p),~and~}$

then we say that X is distributed according to the Binomial Distribution with parameters N and p , and write this as:

$$
X \sim B(N, p)
$$

Where

$$
\begin{aligned}
R_{X} & =\{0, \ldots, N\} \\
\mathrm{f}_{\mathrm{X}}(k) & =\binom{N}{k} p^{k}(1-p)^{N-k}
\end{aligned}
$$

Note: k successes and $\mathrm{N}-\mathrm{k}$ failures SSS...FFFF...
 has probability $\mathrm{p}^{\mathrm{k}}(1-\mathrm{p})^{\mathrm{N}-\mathrm{k}}$ and there $\operatorname{are}\binom{N}{k}$ such sequences.

Binomial Distribution

For the visual display of this distribution, we will look briefly at the Distributions notebook to get a sense for this.....

The motivation for this distribution comes from the fact that many complex phenomena are composed of the additive effect of many small binary choices or events (Bernoulli Trials!); a vivid illustration of this can be seen in the Galton Board or Quicunx:
https://www.mathsisfun.com/data/quincunx.html
https://www.youtube.com/watch?v=J7AGOptcR1E

Binomial Distribution

Example:

Suppose you have not studied for a True/False test and you randomly guess at each problem, and your probability of getting any particular problem correct is 50%; if there are 30 questions on the test and passing is a 60 , what is your probability of passing?

$$
P(X \geq 18)=\sum_{18 \leq k \leq 30}\binom{30}{k} 0.5^{k} \cdot(1-0.5)^{30-k}
$$

```
In [7]: def f(N,p,k):
    return comb(N,k) * (p ** k) * ((1-p) ** (N-k))
    sum([f(30,0.5,x) for x in range(18,31)])
Out[7]: 0.1807973040267825
```

Probability Distribution for $\mathrm{B}(30,0.5)$

Binomial Distribution

Phenomena explained by the binomial are widespread throughout ordinary life, biology, engineering, and business:

- You go through 10 traffic lights; what is the probability that you stop at 4 of them?
- The probability of any individual in this class having a tattoo is 0.2 ; what is the probability that at least 40 people have a tattoo?
- Suppose 5% of tax returns are submitted with fraudulent data and the IRS examines 1% of returns; what is the probability that they will detect 3% of all fraudulent returns?
- There are about 700 gene variants which have been observed to have some influence on height; what is the probability that at least $3 / 4$'s of these genes will be dominant and have an influence on a person's height?

Binomial Distribution

The binomial distribution is of widespread applicability, but it has a disadvantage: the only way to compute probabilities is to use the formula

$$
P(X=k)=\binom{N}{k} p^{k}(1-p)^{N-k}
$$

and this can involve some very large numbers.... for example:
Input:
$\binom{10000}{5000}$

Result:
$15917902635324389483375972736415211886530058374576145504283 \vdots$
191035177726371200957986632628539442222177433585982993226
205580463290870802073985087987219595848962041757866458580
184099587512068914331597813531740514534731996705213945025
384772773360083120537844882395127432175550288318092736464
428179545934936890023546288054736628292721322091972680306
215783976985524868345084786889499461126202336023529898945
89284884275911037432164623520292909554584530402349292778
714312397841036259290830007542173305536549242536830628153

[^0]$\binom{n}{m}$ is the binomial coefficient
Fewer digits More digits

3009 decimal digits

Geometric Distribution

The Geometric Distribution occurs when you count the number of independent and identically distributed Bernoulli trials until the first success.

Formally, if $\mathrm{Y} \sim \operatorname{Bernoulli(p),~and~}$
X = "The number of trials of Y until the first success"
then we say that X is distributed according to the Geometric Distribution with parameter p , and write this as:

$$
X \sim G(p)
$$

where

$$
\begin{gathered}
R_{X}=\{1,2,3, \ldots\} \\
\mathrm{f}_{\mathrm{X}}(k)=(1-p)^{k-1} p
\end{gathered}
$$

For k , we have $\mathrm{k}-1$ failures and 1 success (FFF... FS), which has probability ($1-\mathrm{p})^{\mathrm{k}-1} \mathrm{p}$.

Geometric Distribution

Example

An absent-minded professor has 6 keys on his key ring and does not always remember which of his keys opens his office door. He chooses keys randomly and with replacement to try to open his door.

What is the probability that he opens it on the 3rd try?

Geometric Distribution

Example

An absent-minded professor has 6 keys on his key ring and does not always remember which of his keys opens his office door. He chooses keys randomly and with replacement to try to open his door.

What is the probability that he opens it on the 3rd try?
Solution. This is $G(1 / 6)$.
$P(X=3)=(5 / 6)^{2}(1 / 6)=0.1157$

Geometric Distribution

$$
\left.\begin{array}{rrrrlrll}
R_{X} & =\{ & 1, & 2, & 3, & \ldots & k, & \ldots
\end{array}\right\}
$$

But how do we know this is even a distribution? The only question is: Does f_{X} sum to 1.0?

Yes, no worries.... Suppose α is the sum of f_{X}. Then:

$$
\begin{aligned}
\alpha & =p+(1-p) p+(1-p)^{2} p+(1-p)^{3} p+\ldots \\
& =p+(1-p)\left(p+(1-p) p+(1-p)^{2} p+\ldots\right) \\
& =p+(1-p) \alpha \\
& =p+\alpha-p \alpha
\end{aligned}
$$

Subtracting α from both sides we have:

$$
\begin{array}{rlrl}
& & 0 & =p-p \alpha \\
\Leftrightarrow & p \alpha & =p \\
\Leftrightarrow & & \alpha & =p / p=1.0
\end{array}
$$

Geometric Distribution

Fortunately, the PMF
is easy to compute, and there is are convenient formulae for inequalities:

$$
\begin{aligned}
\boldsymbol{R}_{X} & =\{1,2,3, \ldots\} \\
\mathrm{f}_{\mathrm{X}}(k) & =(1-p)^{k-1} p \\
P(X>k) & =(1-p)^{k} p+(1-p)^{k+1} p+(1-p)^{k+2} p+\ldots \\
& =(1-p)^{k}\left(p+(1-p) p+(1-p)^{2} p+(1-p)^{3} p+\ldots\right) \\
& =(1-p)^{k} \\
P_{X}(X \leq k) & =1.0-P_{X}(X>k)=1.0-(1-p)^{k}
\end{aligned}
$$

Geometric Distribution

Example

From an ordinary deck of 52 cards we draw cards at random and with replacement, and successively until an ace is drawn. What is the probability that at least 10 draws are needed?

Geometric Distribution

Example

From an ordinary deck of 52 cards we draw cards at random and with replacement, and successively until an ace is drawn. What is the probability that at least 10 draws are needed?

Solution: The probability of an ace is $4 / 52=1 / 13$. Thus:

$$
P(X>9)=(1-1 / 13)^{9}=0.4866
$$

Negative Binomial (Pascal) Distribution

The Negative Binomial is simply an "iterated" version of the Geometric.
Formally, if $\mathrm{Y} \sim \operatorname{Bernoulli(} \mathrm{p})$ and

$$
\begin{aligned}
X & =\text { "The number of trials of } Y \text { until } m \text { successes occur" } \\
& =\underbrace{Y+\ldots+Y}_{\text {m times }}
\end{aligned}
$$

then we say that X is distributed according to the Pascal Distribution with parameters m and p, and write:

$$
X \sim \operatorname{Pascal}(m, p)
$$

where

$$
\begin{aligned}
R_{X} & =\{m, m+1, m+2, \ldots\} \\
f_{\mathrm{X}}(k) & =\binom{k-1}{m-1} p^{m}(1-p)^{k-m}
\end{aligned}
$$

Pascal Distribution

Example

Suppose you are throwing darts at a target for practice, and you decide that you will keep throwing until you hit the bull's eye 5 times. Suppose your probability of hitting the bullseye is 10%. What is the probability it takes exactly 10 throws?

Solution:

$$
\mathrm{f}_{\mathrm{X}}(10)=\binom{9}{4} 0.1^{5} \cdot 0.9^{5}=7.44 \times 10^{-4}
$$

Pascal Distribution: Digression

CORRESPONDENCE
Open Access
Low dispersion in the infectiousness of COVID-19 cases implies difficulty in control
Daihai He ${ }^{1 *}$ © 0 , Shi Zhao ${ }^{2,3}$, Xiaoke Xu ${ }^{4}$, Qiangying Lin ${ }^{5}$, Zian Zhuang ${ }^{1}$, Peihua Cao^{6}, Maggie H. Wang ${ }^{2,3}$, Yijun Lou ${ }^{1}$, Li Xiao ${ }^{7}$, Ye Wu ${ }^{8,9^{*}}$ and Lin Yang ${ }^{10^{*}}$

Abstract

The individual infectiousness of coronavirus disease 2019 (COVID-19), quantified by the number of secondary cases of a typical index case, is conventionally modelled by a negative-binomial (NB) distribution. Based on patient data of 9120 confirmed cases in China, we calculated the variation of the individual infectiousness, i.e., the dispersion parameter k of the NB distribution, at 0.70 (95% confidence interval: $0.59,0.98$). This suggests that the dispersion in the individual infectiousness is probably low, thus COVID-19 infection is relatively easy to sustain in the population and more challenging to control. Instead of focusing on the much fewer super spreading events, we also need to focus on almost every case to effectively reduce transmission. Keywords: COVID-19, Basic reproductive number, Dispersion, Negative binomial, Mitigation

Biometrical
 Journal

Article
On the Use of the Negative Binomial in Epidemiology
Prof. B. M. Bennett
First published: 1981 | https://doi.org/10.1002/bimj. 4710230109 | Citations: 26

Cumulative Distribution Functions

One more topic before the lab tomorrow!
The Cumulative Distribution Function (CDF) for a random variable X shows what happens when we keep track of the sum of the probability distribution from left to right over its range:

$$
F_{X}(k)=P(X \leq k)=\sum_{a \leq k} f_{\mathrm{X}} \cdot(a)
$$

Example: $\quad \mathrm{X}=$ "The number of dots shown on a thrown die"

Probability Distribution Function $\mathrm{P}_{\mathrm{X}} \quad$ Cumulative Distribution Function F_{X}

Probabiility Distribution for U(1,7)

[^0]: Number length:

